Completion of Circle Material

Problems Using the Jumping

Task Approach to Junior High
School Students

by Nadya Alvi

Submission date: 21-Jun-2023 06:57PM (UTC+0700)
Submission ID: 2120285595

File name: 31744-104897-1-PB.pdf (474.62K)

Word count: 3219

Character count: 18254

ISSN 2964-1845

7—- Transcendent Journal of Mathematics and Application
Vol. 2, No. 1, Apr 2023, pp. 34-42

Completion of Circle Material Problems Using the Jumping Task Approach to Junior
High School Students

Nadya Alvi Rahma'* and Nissa Kumnia Sari’
! Department of Mathematics Education, Universitas Islam Negeri Sayyid Ali Rahmatullah Tulungagung,
Indonesia
*Corresponding email: nadyaalvirahma@uinsatu.ac.id

ARTICLE INFO ABSTmCT
Article History ()rdcr to practice critical thinking skills, it is necessary to get used
Received :11-03-2023 i practicing questions such as questions based on jumping tasks. The
Revised :11-04-2023 jumping taskJhestion is a question with a level of difficulty above the
Accepted : 12-04-2023 curriculum. In solving mathfJproblems based on jumping tasks,
students often face obstacles. This study aims to describe the profile
Keyword of students' critical thinking towards solving mathematical problems
Adversity Quotient; [Bscd on jumping tasks on circle material. The research was conducted
Circle Problem; Critical at [fJrsN 2 Blitar with 2 students each having adversity quotient types
Thinking; Jumping Task; of climber, camper, and quitter. The data collection technique used
STEM. was an adversity response profile questionnaire, a jumping task-based

math problem solving test and interviews. The research results
obtained showed that at the stage of understanding the problem both
climber, camper and quitter subjects were able to show interpretation
after reading the questions. However, the quitter subject is less precise
in interpreting important information from the problem. In the
problem-solving planning stage, the plan presented by the climber
subject was more appropriate than the plan presented by the camper
subject, while the quitter subject was unable to develop a settlement
plan and the work process stopped at this stage.

DOL: ... ©2023 TIoMA. All rights reserved.

1. INTRODUCTION

Nowadays, the advancement of techn§&pgy has made cloud computing become a new paradigm
for delivering resources or services through the network. Cloud computing is internet-based
computing in which different services, such as: servers, computing resources, storages,
software platforms or even applications, are delivered to the device or computefgZlirough the
internet (Manzoor et al., 2020). Resource allocation is very crucial concern in the cloud
environment. Resource allocation is the process of assigning i number of resources needed
by cloud applications (Liu et al., 2017; Naik et al., 2021). If the resource allocation is not
managed precisely, the cloud services may lack the resources or waste the resources. Auto-
scaling mechanism is one approach used in cloud environment in which service providers can
maintain the resources and reduce waste resources by automatically increasing or decreasing
them when needed (Kumar, 2022). It will monitor information about Central Processing Unit
(CPU) utilization, disk input/output (disk 1/O) and network I/O on server side to trigger system
configuration (Huang et al., 2023).

Several works have been done with different approaches. Lin et al. (2011) proposed
threshold-based approach for dynamic resource allocation scheme implemente@fising
CloudSim that dynamically allocates the virtual resourcgfjbased on their load change. Kang et
al. (2013) proposed an auto-scalin§fhethod that meets SLAs such as deadlines, cost-oriented
or performance-oriented policies to provide efficient resource utilization in hybrid cloud.
Ighare and Thool (2015) addressed automated resource allocation system which uses the
utilization threshold to make decision of the virtual machine migration. Sultana and Kawadkar
(2022) used thresholds with attributes and amount (TAA) in request for task scheduling and

34

Rahma, Completion of Circle Material ... 35

resource allocation strategy to impfve the quality of service. Ashawa et al. (2022) presented
a framework to optimize cloud resource allocation using the LSTM machine learning
algorithm . However, few studies have been done on allocating resources at the application level
and know exactly the performance from client-side experiences.

In this paper, we focus on allocating resources at the application level rather than
mapping the physical resources to virtual resources for better cloud resource utilization. For
this experiment, we employ Amazon Elastic Compute Cloud (Amazon EC2) instances. We
propose a novel cloud resource management framework which supports auto-scaling. The
proposed system will monitor the end-user’s response time directly from client-side. This paper
defined several thresholds with Quality of Services (QoS) considerations to indicate the process
of allocating or terminating the virtual resources when workload of application changes. The
monitoring system will be deployed in client hosts which will send requests for CPUgEjilization,
response time and error rate sampling. We compared the sampling¥jith threshold to optimize
the decision of resource reallocation. The goal of this study was to dynamically allocate virtual
resources among the cloud applications based on their workload changes in order to improve
resource utilization, prevent resource starvation and reduce the user usage cost.

2. METHODS

2.1. System architecture

The proposed framework consists of Cloud Services, Service Builder, Resource Manager and
Elastic Load Tester. Cloud Services provides web services to the end-users. Service Builder
provides infrastructures, management, monitoring, maintenance and other features needed to
run services (Swain et al., 2022). Resource Manager defines user-policies to assigns sufficient
instances needed by the services according to the real end-user experience. It ensures that the
running services meet the user requirement with minimum usage cost. Elastic Load Tester is a
flexible load-testing tool which generates a certain scale of distributed testing framework to
simulate a large number of clients for load testing (Praveenchandar and Tamilarasi, 2022). The
detail of each component is described separately in the following sections.

Server Side

) oy service Builder

Elastic Load Tesier —— Resource Manager

l J l J

Client Side ‘

Figure 1. System architecture

2.1.1. Cloud Services
Cloud Services can be accessed directly by the end-user. It is a group of virtual web servers or
instances that work together in an Auto Scaling Group which is attached to Load

36

TJoMA | Vol. 2, No. 1, Apr 2023, pp. 34-42

Balancer. Auto Scaling Group ensures that services provided can satisty all user
requests. Auto Scaling is a special feature in which instances can be launched or
terminated automatically based on user-defined policies. Policies are defined by
Resource Manager which intends to assign instances efficiently. By providing efficient
instances needed by Cloud Services, the performance of the services can be assured and
the cost usage can be reduced. For example: during high workload traffic, a certain
number of instances can’t satisfy huge number of requests; therefore, additional
instances are required. During low workload traffic, terminating instances precisely can
help to reduce cost usage. On the other hand, Load Balancer will automatically
distribute the incoming application request across multiple virtual web servers. So that
the workload of each server will remain balance which can prevent one instance from
fault because of the workload excess (Dharmara and Kavitha, 2022).

Cloud $ervices
Auto Scaling Group

\@% Web Server Web Server

Load Balancer
End User

Web Server Web Server

Figure 2. Cloud services

2.1.2. Service Builder

Service Builder is a tool set of service features offered by cloud providers to give costumer the
ability to manage the infrastructures. As Figure 3 shows, the Service Builder architecture
consists of three layers: Service Infrastructure, Service Features and Application Programming

Interface Tools (API Tools).

Service Infrastructure
Compute Storage Database Network
Amazon EC2 Amazon EBS, 53 Amazon SimpleDB Amazon VPC, ELB
Service Features
APl Tools
Libraries and SDKs Web Interface Tools Command Line
-NET/lava Management Console AWS Toolkit for Edipse Interface

Figure 3. Service builder layer

Rahma, Completion of Circle Material ... 37

The top layer “Service Infrastructure” interacts directly with Cloud Services. Service
Infrastructure layer provides main resources to run Cloud Services which includes computing,
storage, database and networking resources. Thif) framework architecture currently only
supports Amazon Web Service (AWS) products, such as: Amazon Elastic Compute Cloud
(Amazon EC2) for compute, Amazon Elastic Block Store (Amazon EBS) and Amazon Simple
Storage Service (Amazon S3) for storage, etc.

Service Features is the main function of the Service Builder. It contains all features
needed to deploy, manage and monitor instances. In general, Service Features is categorized
into three components: Authentication and Authorization, Monitoring, and Management and
Ehintenance. Authentication and Management is required for access control. It enables users
to securely control access to AWS services and resources. AWS Identity and Access
Management (IAM) is the example of Authentication and Management provided by AWS. By
using 1AM, users can control the access to AWS resources to create, delete or manage
resources. Monitoring offered by AWS such as: AWS CloudWatch is used to monitor cloud
resources utilization, application performance and operational health. AWS CloudWatch can
collect data metrics, monitor log files and set alarms for specific instances. Management and
Maintenance plays a role in managing Auto Scaling, Load Balancer, Launch Configuration,
Instances, etc.

Application Programming Interface (API) Tools includes all libraries, Software
Development Kits (SDKs), command line interfaces, web interfaces and other tools link
Resource Manager and other Management tools to Service Builder. It is a set of commands,
libraries and protocols used to provide easy access for managing AWS services. The Amazon
API tools serve as the client interface to the Amazon web service. These tools can be utilized
by both users and developers. User APl tools can help user to manage their AWS services while
developer tools will assist developers to optimize their application products.

2.13. Resource Manager
Resource Manager ensures that Cloud Services has enough resources derived from Service
Builder to run web application. Resource Manager defines user-policies to assigns sufficient
instances needed by the services according to the real end-user demand. It ensures that the
running services meet the user requirement with minimum usage cost. Resource Manager
consists of two modules: Monitoring module and Allocation module.

Resource Manager Service Builder

Allocation Module
Define Threshold, Compare Threshold with m
Monitoring input, Allocate Instances

Monitoring Module - QoudWaich
CPU Utilization, Response Time, Error Rate CPU Uulization

|
e

Figure 4. Resource manager

38 TJoMA | Vol. 2, No. 1, Apr 2023, pp. 34-42

Monitor module measures and collects the workload and performance metrics of web
server. There are two types of metrics collected:
1. Server performance
Server performance metric collected by Monitoring module is CPU utilization of the
web server. AWS CloudWatch periodically get the percentage of CPU utilization and pass it
to monitoring module and Event Alarm to trigger Auto Scaling function whenever meet the
policies defined by Allocation module.
2. Client-side experience
Client-side experience metrics including response time and error rate are used to
guarantee the QoS. Elastic load testing using Apache JMeter plays important role to simulate
the real client behavior. Apache JMeter gets the response time and the percentage of error rate
while making requests for the services to the server. Then, these metrics will be forwarded to
allocation module (Qureshi et al., 2020).
Allocation module reads the values from monitoring module and user-defined
config@Eltion. These values will be used to make decision for Auto Scaling. The detail metric
values are shown in Table 1.

Table 1. Metric values used in Allocation module
Variable Name Description

upThr Upper Threshold
lowThr Lower Threshold
tOut The period in which condition must be met to
trigger a scale out (second)
tin The period in which condition must be met to
User-defined trigger a scale in (second)
values vResponse Response time defined wvalue for QoS
considerations (ms)
vError Error rate defined value for QoS considerations (%)
n The number of instances to be allocated/terminated
tCooldown The amount of time need before another scaling
(optional) activity can start (second)
Monitoring pCPU CPU utilization (%)
metrics tResponse Response time (ms)
nError Error rate (%)

Allocation module compares pCPU value from monitoring module against the
threshold values (ugfghr or lowThr) for a specific tIn second in order to determine whether the
server needs more virtual resources or excessive virtual resources owned by web application
based on the actual need (Sahu and Agrawal, 2015; Shahapure et al., 2021). On the other hand,
the client-side monitoring values, such as: tResponse and nError are compared against
vResponse and vError from user-defined values in order to guarantee the QoS. The pseudo
code of allocation procedure is depicted as follows:

Scale out:

IfpCPU > upThr [] tResponse > vResponse [{ nError > vError for tOut then

ninstances = ninstances + n and
do nothing for tCooldown seconds

Scale in:

it pCPU < lowThr for tin then

ninstances = ninstances - n and
do nothing for tCooldown seconds

Rahma, Completion of Circle Material ... 39

2.14. Elastic Load Tester

Elastic Load Tester is a load-testing tool designed to test load behavior and measure
performance. There are many different testing tools, such as Apache JMeter, Load Impact and
Locust, for load test of web services. In this experiment, Apache JMeter was used as a testing
tool. Apache JMeter is an open-source application designed for EE8ting and measuring the
performance of server which is written in Java. It supports testing performance both on static
and dynamic resources which can simulate a heavy load on the servers. This load testing tool
canffid used to load performance test on many different types of server/protocol, such as: web
via Hypertext Transfer Protocol (HTTP/HTTPS), Simple Object Access Protocol (SOAZE) /
Representational State Transfer (REST), File Transter Protocol (FTP), database via Java
Database Connectivity (JDBC), Lightweight Directory Access Protocol (LDAP), message-
oriented middleware via Java MgZ§sage Service (JMS), mail via Simple Mail Transfer Protocol
(SMTP) / Post Office Protocol version 3 (POP3) / Internet Message Access Protocol (IMAP),
MongoDB, Transmission Control Protocol (TCP), etc.

Apache JMeter can simulate a large number of users and avoid a bottleneck arose on
the tester-side by implementing distributed testing. Apache JMeter supports distributed mode
for testing, in which we can remote many hosts concurrently to simulate a high workload.
Figure 12 shows the basic concept of distributed testing. JMeter Slaves deploy on many
different hosts, and these slaves are responsible to process job assigned by JMeter Master.
JMeter Slaves send requests periodically to the testing target for sampling. Finally, JMeter
Master collects the testing result from the testing target.

IMeter

Mazer

Figure 5. Distributed testing on Apache JMeter

2.2. Experiment setting

We used Resource Management Framework tool to deploy web server target and tester clients.
The target system tested on the experiment is a simple web service which is located on Amazon
Web Service us-east-1 region. The target web server employs m3.medium instances with
Bitnami LAMP Stacks installed on it and linked to AWS Elastic Load Balancer (ELB). The
tester clients consists of five tl .micro instances which are located on Amazon Web Service ap-
northeast-1 region.

Table 2. Specification of AWS instances used in the experiment

Price
EC2 Memory Storage
Name Units vCPU (GiB) (GB) Image l_}:ler
our
m3.medium 3 1 375 1x4 Bitnami-lampstack ~ $0.07
SSD Ubuntu-12.04
tl.micro Variable 1 0.615 EBS Ubuntu 1404 LTS $0.02

Only

40 TJoMA | Vol. 2, No. 1, Apr 2023, pp. 34-42

Web Server (us-east-1)

Server 1 Server2 Server n

Service Management

Cllent n Client 2 CIIentB Clbnt 4 Clients

---h__--,. - _,_

e —t

Testing Client (ap-northeast-1)

Figure 6. Experiment setting

2.3. Experiment procedure

The experiment procedure steps are explained as follow:

Step 1. Make a workload configuration for simulating user workload pattern. Figure 2 shows
the number of user threads in one testing client for duration of half an hour. Initial
workload is at 0 thread. The number of threads increases periodically to 40 threads per
second and drops back to 0. Each threshold of the experiment uses the same workload
patterns.

Step 2. Make a service deployment configuration for web server. The initial number of server
nodes is one and maximal node is four with tCooldown is 2 minutes and evaluation
period is every one minute.

Step 3. Build a distributed architecture workload generator with five tester-nodes.

Step 4. Start the testing with four different thresholds (table 3) for each level of QoS guarantees
(table 4).

Step 5. Analyze and compare results, then decide the best threshold by using Cost Performance
Index (CPI) formula with some modifications.

CPI = EV
TAC

where EV is Earned Value which is the actual benefit value earned from the services while AC
is Actual Cost which is the amount of cost needed to provide the services. In this case, the

Rahma, Completion of Circle Material ... 41

3. CONCLUSIONgg

Resource allocation plays a very important role for the service provision. If the allocation of
resources is not managed precisely, the cloud services may starve or may wastfihe resources.
This situation will lead the services running on underutilization of resources. To address this
problem, we propose a novel cloud resource management framework which supports dynamic
auto-scaling. The proposed system monitors the end-user’s response time directly from client-
side. We defined several thresholds and QoS guarantee levels in order to trigger the decision
of allocating or terminating the virtual resources when workload of application changes. The
monitoring system will be deployed in client hosts which will send request for CPUgEjlization,
response time and error rate sampling. We compared the sampling with threshold to optimize
the decision of resource reallocation. The experimental results show the proposed framework
with proper threshold can improve the efficiency of resource utilization and reduce the usage
cost. Currently, the proposed system uses static and predefined threshold values. Selecting
proper threshold values is key to success in this approach. A lower value leads instances change
frequently with high performance while a higher value makes instances less of responsiveness.
Employing intelligent system to automatically define threshold values based on the workload
history could be considered as the future direction.

ACKNOWLEDGMENTS
Thanks to the Department of Informatics, Universitas Syiah Kuala and NCTU-DSCLAB for
the facilities provided to complete this research.

BEFERENCES

Ashawa, M., Oyakhire, D., Osamor, J., & Riley, J. (2022). Improving Cloud Efficiency through
Optimized Resource Allocation Technique for Load Balancing Using LSTM Machine
Learning Algorithm. Journal of gloud Computing, 11(87), 1-8.

Dharmara, S., & Kavitha, P. (2022). Task Scheduling and Resource Allocation in Cloud

(6] Computing Using a Heuristic Approach. YMER, vol. 21 : issue 12, pp. 1769-1778.

Huang, S.-Y., Chen, C.-Y., Chen, J.-Y., & Chao, H.-C. (2023). A Survey on Resource
Management for Cloud Native Mobile Computing: Opportunities and Challenges.
Symmetry, 15, 535)

Ighare, R., & Thool, R. (201§ Threshold based Dynamic Resource Allocation using Virtual
Machine Migration. International Journal of Current Engineering and Technology,

5(4), 1-7.

@ng, H., Koh, J., Kim, Y., & Hahm, J. (2013). A SLA Driven VM Auto-scaling Method in
Hybrid Cloud Environment,” Netw. Oper. Manag. Symp. (APNOMS), 15th Asia-
Pacifipp. 1-6.

Kumar, A. (2022). Study on Cloud Computing for Efficient Resource Allocation and
Scheduling Approaches. Journal of Contemporary Issues in Business and Government,

e 28(4), pp. 1379-1387.

Lin, W., Wang, J., Liang, C., & Qi, D. (2011). A Threshold-based Dynamic Resource

Allocation Scheme for Cloud Computing, Procedia Eng., vol. 23, pp. 695-703.

Liu,N,Li,Z., Xu,J., Xu,Z_, Lin, S_, Qiu, Q., Tang, J., & Wang, Y. (2017). A Hierarchical
Framework of Cloud Resource Allocation and Power Management Using Deep

Reinforcement Learning.

Manzoor, M., Abid A., Farooq, M., Nawaz, A., & Farooq, U. (2020). Resource Allocation
Techniques in Cloud Computing: A Review and Future Directions. Elektronika Ir
Elektrotechnika, 26(6), 1-10.

42 TJoMA | Vol. 2, No. 1, Apr 2023, pp. 34-42

Naik, A., Sooda, K., & Rai, K. (2021). A study on Optimal Resource Allocation Policy in
Cloud Environment. Turkish Journal of Computer and Mathematics Education, 12(14),
pp. 5438-544@)

Qureshi, S., Qureshi, B., Fayaz, M., Zakarya, M., Aslam, S., & Shah, A. (2020). Time and Cost
Efficient Cloud Resource Allocation for Real-Time Data-Intensive Smart Systems.
Energies. (4]

Praveenchandar, J., & Tamilarasi, A. (2022). Resource Allocation Using Phase Change Hyper
Switching Algorithm in the Cloud Environment. Intelligent Automation & Soft

Computing, 34(3).

Sahu, Y., & Agrawal, N. (2015). Scheduling Resources in Cloud using Threshold Values at
Host and Data Center Level. International Journal of Computer Science and
Information Technologies (IJCSIT), 6(6). @

Shahapure, N., Rekha, P., & Poornima, N. (2021). Threshold Compare and Load Balancing
Algorithm for Resource Optimization in a Green Cloud. Revista GEINTEC, 11(4), pp.
4465-4481.

Sultana, F., & Kawadkar, P. (2022). Task Scheduling andg#jesource Allocation Strategy by
Using Thresholds with Attributes and Amount. International Journal of Creative

Research Thoughts (IICRT), 10(3), 1-12.

Swain, S.-R., Singh, A -K., & Lee, C.-N. (2022). Efficient Resource Management in Cloud
Environment.

Completion of Circle Material Problems Using the Jumping

Task Approach to Junior High School Students

ORIGINALITY REPORT

271+ 18 11 9

SIMILARITY INDEX INTERNET SOURCES PUBLICATIONS STUDENT PAPERS

PRIMARY SOURCES

repo.uinsatu.ac.id

Internet Source

3%

researchonline.gcu.ac.uk

Internet Source

(K

mdpi-res.com

Internet Source

T

scholar.archive.org

Internet Source

T

www.slideshare.net

Internet Source

T

Submitted to Wilmington University

Student Paper

T

link.springer.com

Internet Source

T

6
8

Lin, Weiwei, Chaoyue Zhu, Jin Li, Bo Liu, and
Huigiong Lian. "Novel algorithms and
equivalence optimisation for resource

T

allocation in cloud computing", International
Journal of Web and Grid Services, 2015.

Publication

dWsS.dmazon.com

Internet Source

(K

—
)

jestec.taylors.edu.my

Internet Source

T

—_—
—

www.cibgp.com

Internet Source

T

—
N

www.techtarget.com

Internet Source

(K

—
W

Bo Wang, Changhai Wang, Ying Song, Jie Cao,
Xiao Cui, Ling Zhang. "A survey and taxonomy
on workload scheduling and resource
provisioning in hybrid clouds", Cluster
Computing, 2020

Publication

T

B

Submitted to Zikura International College
Student Paper

T

Swapnil M Parikh. "A survey on cloud
computing resource allocation techniques",
2013 Nirma University International
Conference on Engineering (NUICONE), 2013

Publication

T

WWW.pria.us

Internet Source

T

Joy, Jimy, and L. Krishna Kumar. "Cost and <1

. . . %
deadline optimization along with resource
allocation in cloud computing environment",
2013 International Conference on Advanced
Computing and Communication Systems,
2013.

Publication

Yar Rouf, Joydeep Mukherjee, Marin Litoiu, Joe <1 o
Wigglesworth, Radu Mateescu. "A Framework ’
for Developing DevOps Operation Automation

in Clouds using Components-off-the-Shelf",
Proceedings of the ACM/SPEC International
Conference on Performance Engineering,

2021

Publication
oucLBovLe <1y
Coucacademy-com <1y
Submitted to Bayerische Julius-Maximilians- < o

Universitat Wurzburg
Student Paper

arunj2ee.blogspot.com

Internet Source <1 %

. www.businessvalueconsulting.com.ng <1
Internet Source %

Submitted to VIT Universit

Student Paper y <1 %
Www.uin-suka.ac.id

Internet Source <1 %

S. Thamarai Selvi, C. Valliyammai. "Dynamic <'I o
resource allocation with efficient power ’
utilization in Cloud", 2014 Sixth International
Conference on Advanced Computing (ICoACQ),

2014

Publication

N
(@)

%] Psasir.upm.edu.my <1 o

Internet Source

Tushar Bhardwaj, Subhash Chander Sharma. <'] o
"An autonomic resource provisioning
framework for efficient data collection in
cloudlet-enabled wireless body area
networks: a fuzzy-based proactive approach”,
Soft Computing, 2018

Publication

ebscoapac.stacksdiscovery.com <1 o

Internet Source

B Yongbao Chen, Zhe Chen. "Short-term load <'] o
forecasting for multiple buildings: A length ’

sensitivity-based approach", Energy Reports,

2022

Publication

dcclab.sookmyung.ac.kr
Internet Source y g <1 %
e-journal.iain-palangkaraya.ac.id
IntélrnetSource p g y <1 %
ress.um.si
IFr?ternetSource <1 %
what-when-how.com
Internet Source <1 %
H Nakanishi, T Nishimoto, R Nakamura, A <1 y
Yotsumoto, T Yoshida, S Shoji. "Studies on ’
Si02-Si02 bonding with hydrofluoric acid.
Room temperature and low stress bonding
technique for MEMS", Sensors and Actuators
A: Physical, 2000
Publication
Sruthy Santhosh, A Binu. "Auto scaling for <1 o

various patterns of workflow within deadline
time and energy aware VM allocation in cloud
environment", 2016 International Conference
on Data Science and Engineering (ICDSE),
2016

Publication

Exclude quotes Off Exclude matches Off

Exclude bibliography Off

